UNIT DESCRIPTION

The WattStopper DT-300 360° Dual Technology occupancy sensors combine advanced passive infrared (PIR) and ultrasonic technologies into one unit. The combination of these technologies helps to eliminate false triggering problems even in difficult applications.

The DT-300 turns lighting systems on and off based on occupancy. The DT-300 provides numerous operating modes that can be combined to create the ideal custom control. The sensors can be configured to turn lighting on and hold it on as long as either or both technologies detect occupancy. After no movement is detected for a user specified time (30 seconds to 30 minutes), the lights are switched off. A “walk-through” mode can turn lights off after only 3 minutes if no activity is detected after 30 seconds of an occupancy detection.

The DT-300 operates on 24V supplied by WattStopper Power Packs. DT-300 sensors also have an isolated relay with Normally Open and Normally Closed contacts for interfacing with HVAC or EMS.

COVERAGE PATTERN

The DT-300 provides a 360° coverage pattern. The coverage shown represents walking motion at a mounting height of 8-12 feet. For building spaces with lower levels of activity or with obstacles and barriers, coverage size may decrease. The coverage for PIR ONLY trigger mode varies with mount height. Refer to pattern below for details. Ultrasonic coverage is roughly the same for 8-12 foot mount heights. Refer to PIR and Ultrasonic trigger mode coverage for details.

SPECIFICATIONS

- Voltage: 18-28VDC/VAC, half wave rectified AC
- Current Consumption: 28mA DC/81mA AC
- Power Supply: WattStopper Power Packs
- Isolated Relay Rating: 1A @ 30VDC/VAC
- Operating Temperature: 32°F to 131°F (0°C to 55°C)
- Light Level One-Step Adjustment: 10FC—300FC
- Time Delay Adjustment: 30 seconds to 30 minutes
- Walk-Through Mode: 3 minutes if no activity after 30 sec
- Test Mode: 5 sec. upon DIP switch reset
- PIR Coverage (Typical): 1300 ft²
 - Sensitivity Adjustment: High or Low (DIP switch setting)
- Ultrasonic Coverage (Typical): 1300 ft²
 - Sensitivity Adjustment: Min. to Max. (trimpot)
- Frequency: 40kHz

UL & CUL Listed for use with WattStopper Power Packs

Catalog Number • Numéro de Catalogue • Número de Catálogo: DT-300

Country of Origin: Made in China • Pays d'origine: Fabriqué en Chine • País de origen: Hecho en China

DT-300-U is BAA and TAA compliant (Product produced in the U.S.)
PLACEMENT GUIDELINES

Depending upon obstacles such as furniture or room layout, the area of coverage may be less or more than the sensing distances shown in the coverage pattern. This must be considered when planning the number of sensors and their placement. It is also recommended to place the sensor at least 4 to 6 feet away from air supply vents.

Mount the sensor to the ceiling. The DT-300 is designed for a ceiling heights of about 8-12 feet. Mounting above or below this range will significantly affect the coverage patterns. As a general rule, each occupant should be able to clearly view the sensor.

Masking the PIR Lens: Opaque adhesive tape is supplied so that sections of the PIR lens can be masked. This restricts the sensor’s view and allows you to eliminate PIR coverage in unwanted areas such as hallways outside of the desired coverage area. Since masking removes bands of coverage, remember to take this into account when troubleshooting coverage problems. The Ultrasonic coverage cannot be masked, but you can adjust its sensitivity to reduce the coverage area.

If the space is larger than 30’ x 30’ it will be necessary to use more than one sensor to ensure complete coverage.

Common application: Classroom: Position the sensor so that the maximum coverage is achievable. Be sure that the sensor is not pointing out the door.

WIRING DIRECTIONS

WARNING: TURN THE POWER OFF AT THE CIRCUIT BREAKER BEFORE WIRING.

Each WattStopper BZ series power pack can supply power for 6 DT-300 sensors. When using more sensors than this, multiple power packs are required.

Refer to the wiring diagram on the next page for the following procedures:

Connect the low voltage:

- RED wire (+24VDC) from power pack to the +24V terminal on the sensor.
- BLACK wire (Return) from power pack to Common terminal on the sensor.
- BLUE wire from power pack to Control Out terminal on sensor.

To add a MANUAL SWITCH such as the LVSW Momentary Toggle Switch, or RS2-3 Low Voltage Momentary Switch to the above applications (see wiring diagram “Manual-On wiring with low voltage momentary switch”) – connect:

- Wire from one side of switch to +24V terminal on sensor.
- Wire from other side of switch to Man Switch terminal on sensor.

Wiring the ISOLATED RELAY: The Isolated Relay is rated for 1A@30VAC/VDC.

Connect the wires necessary to the application that requires this output:

- Relay Common (must be used for proper operation)
- N.O. (Normally Open)–Closed when occupancy is detected
- N.C. (Normally Closed)–Open when occupancy is detected
CONNECTING WIRES

- Care should be taken to separate high voltage power from low voltage (Class 2) control wiring.
- All connections to sensor are low voltage, Class 2.

Standard wiring with two local off switches

Manual-On wiring with low voltage momentary switch

MOUNTING THE SENSOR

Directly to Ceiling
1. Attach the plastic spring clips to the edge of the sensor in the slots provided.
2. Cut a 3.5" to 4" round hole in the acoustic ceiling tile at the mounting location. A 3.5" hole is recommended for a secure fit.
3. Pull the low voltage wire from the power pack to the sensor through the hole.
4. Connect the low voltage wires to the appropriate terminals on the sensor.
5. Push the sensor up through the hole until the Spring Clips hold the sensor securely in place.
6. Snap the front cover onto the sensor.

Using an Octagonal J-Box
1. Pull the low voltage wires from the power pack into the J-Box through the conduit knockout.
2. Connect the low voltage wires to the appropriate terminals on the sensor.
3. Loosen the appliance mounting screws attached to the J-Box.
4. Align the sensor in the J-Box so that the mounting screws on the box match the key holes on the sensor’s rear housing.
5. Push the sensor up into the J-Box and twist it so that the mounting screws are seated in the keyhole slots.
6. Tighten the two screws to secure the sensor to the J-Box.
7. Snap the front cover onto the sensor.
SENSOR ADJUSTMENT

This unit is pre-set for basic operation as described in this guide. Adjustment is optional.

The sensors are factory preset to allow for quick installation in most applications. Verification of proper wiring or coverage, or customizing the sensor’s settings can be done using the following procedures. To make adjustments, open the Front Cover by pulling on the cover tab.

NOTE: There is a 30 second warm-up period when power is first applied.

Before making adjustments, make sure the office furniture is installed, lighting circuits are turned on, and the HVAC systems are in the overridden/on position. VAV systems should be set to their highest airflow. Set the Logic Configuration and Time Delay to the desired settings. See “Logic Configuration Chart.”

To Test Occupancy Sensors

1. Ensure the Time Delay is set for Test Mode* using the “Test Mode/20 minutes” setting. (DIP switches 1, 2, & 3 are OFF).
2. Ensure that the Light Level is at default (maximum). Press and hold the pushbutton for 5 seconds or until the Green LED flashes rapidly. Wait 10 seconds for the flashing to stop.
3. Ensure that the Ultrasonic Sensitivity trimpot is set to about 70%, clockwise.
4. Remain still. The red and green LEDs should not flash. The lights should turn off after 5 seconds. (If not, see “Troubleshooting.”)
5. Move around within the coverage area. The lights should come on. Adjust the Ultrasonic Sensitivity as necessary to provide the desired coverage (Green LED indicates activation from the ultrasonic sensor).

When testing and adjustment is complete, reset DIP Switches and Light Level to the desired settings, and replace the cover on the sensor.

NOTE: Test Mode is a temporary state that starts when you first set the sensor’s DIP switches for the “Test Mode/20 minutes” (switches 1, 2, 3 OFF). If you need to invoke the Test Mode and the DIP switches are already set for Test Mode/20 minutes, toggle DIP switch 1 ON then back to the OFF position. This provides a 10 minute test period. During the test period, the Time Delay is only 5 seconds.

Light Level feature

The Light Level feature holds lights off upon initial occupancy if adequate ambient light exists. It will not turn the lights off if they are on. The default setting is for maximum, meaning that even the brightest ambient light will not hold the lights off.

Notes on Functionality

• Avoid mounting the sensor close to lighting fixtures.
• Adjust during daylight hours when ambient light in the area is at desired level.
• Light Level cannot be enabled while Test Mode is active. Either wait for Test Mode to expire or select any of the other Time Delay settings before enabling the Light Level feature.
• Ultrasonic occupancy indicator from LED is disabled when the Light Level feature is enabled. PIR occupancy indicator LED may still respond when lights are being held off. LEDs will also flash periodically to indicate the sensor has Light Level enabled.
• Light Level settings are only saved in the event of a power loss. Disabling Light Level and then reenabling it will not return it to previous settings.
• If Test Mode is enabled after Light Level has been set, Light Level functionality will cease to function throughout the duration of Test Mode. When Test Mode period expires, the Light Level functionality will resume, even if the Dip Switches remain set to Test Mode.

Setting Light Level

1. Make sure Test Mode is not active.
2. Toggle the state of the sensor, by briefly pressing the Light Level button, to include or exclude the lighting load from the light level calibration. Open the Front Cover and locate the Light Level pushbutton. See Sensor Adjustment.
3. Press and hold the Light Level button for 2 or more seconds, or until the detection LEDs turn On. Do not exceed 5 seconds. The sensor enters setup mode, as indicated by the rapidly flashing LEDs. The LEDs will flash throughout the setup process. Occupancy indications from the LEDs are disabled during setup.
4. Move away from the sensor to avoid interference with light level detection. The sensor measures the light level for a 10 second period, then averages the readings and automatically sets the level that will be used as the new setting. The sensor will hold lights off when the ambient light exceeds this setting.
5. When the two LEDs stop flashing, replace the Front Cover.

Disabling Light Level

Pressing the pushbutton for 5 seconds or more resets the light to default (maximum).
Press and hold the Light Level button for 5 seconds or until the detection LED(s) turn ON and then OFF. The LEDs flash rapidly for 10 seconds after the setting has changed.
MANUAL ON FUNCTION

The Manual ON function is facilitated by installing a momentary switch such as Watt Stopper LVS-1 Momentary Toggle Switch, or RS2-3 Low Voltage Momentary Switch. The switch connects to the sensor’s Manual (Man.) Switch and +24V terminals as shown in the wiring diagram. Each time the switch is pressed, the load changes state. The sensor’s operation as related to the manually operated switch is determined by DIP switch settings for Occupancy Logic.

Manual Mode (Trigger Option 6 or 7): In this mode, the switch is required to turn on the load. The sensor keeps the load ON, based on occupant activity. After the time delay ends, if there is no movement detected within the 30 second re-trigger period, the load turns OFF and the manual switch must be used to turn ON the load.

Automatic Mode (any Trigger Option except 6 or 7): These options use occupancy triggers as well as switch activation to turn the load ON. A manual switch provides the following additional functionality:

1. The load can be turned ON using the manual switch and it stays on according to the occupancy logic setting. The time delay operates as programmed. When the load turns OFF due to lack of occupancy detection, it can be turned ON again by occupancy detection or the switch.
2. Activating the manual switch while the load is ON turns the load OFF.
 - When the load is turned OFF manually, as long as the sensor continues to detect occupancy the load stays OFF. The length of the time delay after the last occupancy detection, the lights stay off and the sensor reverts to the automatic-on mode.
 - When the load is turned OFF manually, pressing the switch again turns the load ON and the sensor reverts to the automatic-on mode.
 - Once returning to automatic-on mode, either the switch or occupancy detection can turn the load ON.

OVERLOAD PROTECTION

The occupancy sensor has a built in overload protection function that will automatically turn off the control output when the load current exceeds 200mA. The sensor LEDs will then blink rapidly (~ 10Hz) to provide a visual indication of an overload condition. When the load current is corrected or returns to normal, the control output will turn back on.

DIP SWITCH SETTING

Time Delay: Switches 1, 2, 3
The sensor will hold the lights ON as long as occupancy is detected. The time delay countdown starts when no motion is detected. After no motion is detected for the length of the time delay, the sensor will turn the lights OFF.

Walk-through: Switch 4
Walk-through mode turns the lights OFF three minutes after the area is initially occupied, if no motion is detected after the first 30 seconds. If motion continues beyond the first 30 seconds, the selected time delay applies.

PIR Sensitivity: Switch 5
- Minimum forces a reduced detection range for the PIR.
- Maximum causes the DT-300 to monitor the controlled environment and automatically select the maximum sensitivity that will provide reliable operation without false detection. This setting is constantly updated.

Occupancy Logic: Switches: 6, 7, 8
The DT-300 has 8 logic configurations for occupancy triggers, set with DIP switches 6, 7 & 8. Determine the appropriate Occupancy Logic Option using the Trigger matrix, then set the DIP switches accordingly.

Initial Occupancy: The method that activates a change from “Standby” (area unoccupied and loads are OFF) to “Occupied” (area occupied and loads are ON).
- Both requires detection by PIR and Ultrasonic.
- Either requires detection by only one technology.
- PIR requires detection by the PIR.
- Man. requires activation of the Manual Switch. (See Manual ON functions* for further information.)

Maintain Occupancy: The method indicating that the area is still occupied and the lights should remain ON.

Re-trigger: After the time delay elapses and the lights turn OFF, detection by the selected technology within the number of seconds indicated turns the lights back ON.
TROUBLESHOOTING

For any unexpected operation

1. Check DIP switch settings. Make sure the switches are set according to the defined settings in the DIP Switch Setting chart.

Lights do not turn on when entering the room.

Neither LED Flashes

1. Check that the circuit breaker has been turned back on.
2. Check all sensor and power pack wire connections.
3. Check for 24VDC input to the sensor between the red and black low voltage wires.
 • If 24VDC is present, replace the sensor.
 • If 24VDC is not present, check the high voltage connections to the power pack.
 • If high voltage connections are good and high voltage is present, replace the power pack.

Red LED does not flash

1. When power is initially applied to the sensor, there is a warm-up period of 30 to 60 seconds before the LED becomes active.
2. Make sure PIR sensitivity is set to 100% (DIP switch #5 is in the “off” position).

Green LED does not flash

Ultrasonic sensitivity setting may need to be increased. Turn adjustment trimpot clockwise until the LED begins to flash when movement occurs.

Green LED is on steady

Check ultrasonic sensitivity trimpot. Fully counterclockwise position is the override for the sensor. Turn trimpot clockwise until LED flashes only when movement occurs in the desired coverage area.

Red and Green LEDs flash

1. Check all sensor and power pack connections.
2. Check if Light Level is enabled.
 • If occupancy indicator LEDs blink together every few seconds, sensor is using Light Level feature.
 • If Light Level functionality is not desired, press and hold for 5 seconds to return sensor to the default setting (maximum).
3. Check for 24VDC at the power pack blue and black wire connections to sensor while sensor is active.
 • If there is no voltage, replace the sensor.
 • If there is voltage, check for 24VDC between the blue and black wire at the power pack. If 24VDC is present and the relay is not closing, replace it.
 • If 24VDC is not present, check for a break in the low voltage wiring.
4. If LEDs are flashing rapidly (~10Hz), an overload condition exists. When this is corrected, the sensor will return to normal operation. Check the blue wire connection. If necessary, replace the power pack.

Lights do not turn off automatically

Green LED flashes

Reduce ultrasonic sensitivity by turning adjustment pot counter-clockwise until it only flashes when movement occurs.

Red LED flashes briefly and Green LED does not flash

Check to see if you have used the Manual Switch connection. Do not connect anything to this terminal if you are not using a low voltage momentary switch between the sensor and power pack.

Red LED randomly flashes

Set PIR sensitivity to minimum by turning DIP switch 5 to the “on” position.

Lights do not turn off

1. Check all sensor and power pack wire connections.
2. Disconnect power pack blue wire.
 • If lights do not turn off, check power pack wiring. Replace the power pack if necessary.
 • If lights turn off, the problem may be the sensor or wiring between the sensor and power pack.
3. Reconnect the blue wire.
 • Turn sensitivity and time delay to minimum, and allow the sensor to time out.
 • If lights turn off, the sensor is working properly – adjust sensitivity and time delay for the sensor.
 • If lights do not turn off, check the wiring between the sensor and power pack.
 • If wiring is correct, replace the sensor.
SERVICE

To override all sensor functions, set the Ultrasonic Sensitivity trimpot to the fully counterclockwise (Service) position. This bypasses the occupancy control functions of the sensor, but still allows the lights to be manually controlled with a light switch, if one is installed.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Catalog #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT-300</td>
<td>Dual Technology Occupancy Sensor, 360° Low Voltage w/Isolated Relay and light level sensor</td>
</tr>
<tr>
<td>DT-305</td>
<td>Dual Technology Occupancy Sensor, 360° Low Voltage</td>
</tr>
<tr>
<td>BZ-50, BZ-150</td>
<td>Power Pack: 120/277VAC, 50/60Hz, 225mA, 20A ballast or incandescent, 1HP@120/250VAC</td>
</tr>
<tr>
<td>BZ-200, BZ-250</td>
<td>Power Pack: 120/277 VAC, 50/60Hz, 225mA, 20A ballast/ELV/MLV/incandescent/LED;16A E-ballast/CFL</td>
</tr>
<tr>
<td>S120/277/347E-P</td>
<td>Auxiliary Relay Pack: 120/277VAC, 60Hz, 20A Ballast, 347VAC, 60Hz, 15A Ballast</td>
</tr>
</tbody>
</table>

All sensors are white. BZ series power packs supply power for up to 5 DT-300 sensors.
DESCRIPTION DE L’APPAREIL

Les détecteurs de présence à double technologie 360° DT-300 de WattStopper associent les technologies avancées de l’infrarouge passif (IRP) et des ultrasons dans une seule unité. L’association de ces technologies permet de contribuer à éliminer les problèmes de faux déclenchements même dans les applications difficiles.

Le DT-300 allume et éteint les systèmes d’éclairage en fonction de la présence. Le DT-300 propose différents modes de fonctionnement qui peuvent être associés pour obtenir une régulation personnalisée idéale. Les détecteurs peuvent être configurés pour allumer l’éclairage et le maintenir ainsi que l’une des deux ou les deux technologies détectent une présence. Si aucun mouvement n’est détecté pendant une durée spécifiée par l’utilisateur (30 secondes à 30 minutes), les lumières sont éteintes. Le mode « passage » permet d’éteindre les lumières au bout de 3 minutes seulement si aucun mouvement n’est détecté 30 secondes après la détection d’une présence.

Le DT-300 fonctionne avec un courant de 24 V fourni par les blocs d’alimentation WattStopper. Les détecteurs DT-300 comporte également un relais isolé avec des contacts Normalement Ouvert et Normalement Fermé pour l’interaction avec les systèmes CVCA ou SGE.

CARACTÉRISTIQUES

- Tension : 18-28 VCC/VCA, courant alternatif redressé mono alternance
- Consommation de courant : 28mA DC/81mA AC
- Alimentation électrique : Blocs d’alimentation WattStopper
- Valeurs nominales du relais isolé : 1 A à 30 VCC/VCA
- Température de fonctionnement : 0 à 55 °C (32 à 131 °F)
- Réglage du niveau de luminosité en une étape : 10 FC—300 FC
- Réglage de la temporisation : 30 secondes à 30 minutes
- Mode passage : 3 minutes si aucune activité après 30 sec.
- Mode test : 5 sec. après activation de l’interrupteur DIP
- Portée IRP (normale) : (1 300 pi²)
- Portée ultrasonique (normale) : (1 300 pi²)
- Fréquence : 40 kHz

UL & CUL listés pour une utilisation avec les blocs d’alimentation WattStopper

INSTRUCTIONS DE PLACEMENT

En fonction des obstacles, tels que des meubles ou la disposition de la pièce, la portée de l’unité peut être réduite ou augmentée par rapport aux distances de perception illustrées dans le schéma de la portée. Cela doit être pris en compte dans le choix du nombre de détecteurs et de leur placement. Il est également conseillé de placer le détecteur à une distance de 1,2 à 1,8 mètres (4 à 6 pieds) minimum des conduits d’aération.

Montez le détecteur sur le plafond. Le DT-300 est conçu pour une hauteur de plafond d’environ 2,44 à 3,66 m (de 8 à 12 pi). Le placer à une hauteur supérieure ou inférieure à celle recommandée affectera de manière significative la portée de l’appareil. En règle générale, chaque occupant doit être capable de voir clairement le détecteur.

Obstruction de la lentille IRP : du ruban adhésif opaque est fourni de manière à pouvoir masquer des parties de la lentille IRP. Cela limite le champ de vision du détecteur et permet d’empêcher la portée de l’IRP dans les zones non désirées, telles que des couloirs hors de la zone de portée souhaitée. Étant donné que cette obstruction diminue la portée, n’oubliez pas d’en tenir compte en cas de dépannage des problèmes de portée. La portée des ultrasons ne peut pas être bloquée, mais vous pouvez régler la sensibilité pour réduire la zone de portée.

Application habituelle : salle de classe : placez le détecteur de telle sorte que la portée maximum puisse être obtenue. Assurez-vous que le détecteur n’est pas dirigé vers la porte.

Si l’espace mesure plus de 9,15 m par 9,15 m (30 pi x 30 pi), il sera nécessaire d’utiliser plus d’un détecteur pour assurer une portée sur l’ensemble de l’espace.
PORTÉE

Le DT-300 présente une portée à 360°. La portée indiquée dans le schéma représente un mouvement de marche pour une hauteur de montage de 2,44 à 3,66 mètres (8-12 pi). Pour les bâtiments avec une activité plus faible ou avec des obstacles et barrières, la zone de portée risque de diminuer. La portée en mode de déclenchement par IRP UNIQUEMENT varie selon la hauteur de montage. Consultez le schéma ci-dessous pour plus de renseignements. La portée ultrasonique est à peu près la même lorsque la hauteur de montage se trouve entre 2,44 et 3,66 mètres (8 et 12 pi). Consultez la partie concernant le mode de déclenchement par IRP et ultrasons pour plus de renseignements.

INSTRUCTIONS DE CÂBLAGE

Chaque bloc d’alimentation de la série BZ de WattStopper peut alimenter jusqu’à 6 détecteurs DT-300. Lorsque vous utilisez plus de détecteurs, plusieurs blocs d’alimentation seront nécessaires.

Veuillez vous référer au schéma de câblage de la page suivante pour les procédures suivantes:

Raccordez la basse tension:
- Fil ROUGE (+ 24 VCC) du bloc d’alimentation à la borne + 24 V du détecteur.
- Fil NOIR (retour) du bloc d’alimentation à la borne Commun du détecteur.
- Fil BLEU du bloc d’alimentation à la borne Sortie Contrôle du détecteur.

Pour ajouter un INTERRUPTEUR MANUEL, tel que l’interrupteur à bascule instantané LVSW, aux applications ci-dessus (voir schéma de câblage « Câblage de la marche manuelle avec un interrupteur instantané basse tension ») – raccordez:
- Fil d’un côté de l’interrupteur à la borne + 24 V du détecteur.
- Fil de l’autre côté de l’interrupteur à la borne Interrupteur man. du détecteur.

Câblage du RELAIS ISOLÉ : Le relais isolé est prévu pour un courant d’1 A à 30 V c.a./V c.c. Raccordez les fils nécessaires à l’application qui nécessite cette sortie :
- Borne commun (doit être utilisé pour un fonctionnement correct)
- N.O. (Normalement Ouvert)–Fermé lorsqu’une présence est détectée
- N.C. (Normalement Fermé)–Ouvert lorsqu’une présence est détectée
RACCORDEMENT DES FILS

- Vous devez faire attention à séparer les fils haute tension du secteur des fils de régulation basse tension (classe 2).
- Tous les raccordements au détecteur sont basse tension, classe 2.

Câblage standard avec deux interrupteurs d’arrêt local

Câblage de la marche manuelle avec un interrupteur momentané basse tension

MONTAGE DU DÉTECTEUR

Directement sur le plafond

1. Fixez les clips à ressort en plastique sur les bords du détecteur dans les fentes prévues à cet effet.
2. Découpez un orifice rond de 8,9 à 10,2 cm (3,5 à 4 po) dans la tuile du plafond acoustique au niveau de l’emplacement de montage. Un orifice de 8,9 cm (3,5 po) est recommandé pour un bon maintien.
3. Faites passer les fil basse tension provenant du bloc d’alimentation vers le détecteur à travers l’orifice.
4. Branchez les fils basse tension aux bornes correspondantes du détecteur.
5. Soulevez le détecteur à travers l’orifice jusqu’à ce que les clips à ressort maintiennent le détecteur fermement en place.
6. Clipsez le couvercle frontal sur le détecteur.

En utilisant une boîte de jonction octogonale

1. Faites passer les fil basse tension provenant du bloc d’alimentation dans le boîtier de raccordement à travers l’alvéole sectionnable du conduit.
2. Branchez les fils basse tension aux bornes correspondantes du détecteur.
3. Desserrez les vis de fixation du dispositif fixes sur le boîtier de raccordement.
4. Alignez le détecteur dans le boîtier de raccordement de sorte que les vis de fixation du boîtier correspondent aux fentes en trou de serrure du boîtier arrière du détecteur.
5. Poussez le détecteur dans le boîtier de raccordement et tournez-le de sorte que les vis de fixation se bloquent dans les fentes en trou de serrure.
6. Serrez les deux vis pour fixer le détecteur au boîtier de raccordement.
7. Clipsez le couvercle frontal sur le détecteur.
Les détecteurs sont prérégulés en usine afin de vous permettre de l’installer rapidement dans la plupart des applications. Pour vérifier que le câblage ou la portée sont corrects, ou pour personnaliser les réglages du détecteur, suivez les procédures suivantes. Pour effectuer les réglages, ouvrez le couvercle frontal en tirant sur les pattes du couvercle.

REMARQUE: Lorsque l’unité est mise sous tension pour la première fois, elle passe tout d’abord par une période de réchauffement de 30 secondes.

Avant d’effectuer des réglages, assurez-vous que les meubles de la zone de travail sont installés, que les circuits d’éclairage sont allumés et que les systèmes DAV doivent être réglés sur le débit d’air le plus important. Paramétrez la configuration logique et la temporisation en adoptant les réglages souhaités. Consultez le « Tableau des configurations logiques ».

Pour tester les détecteurs de présence

1. Assurez-vous que la temporisation est réglée sur le Mode Test* en utilisant le réglage « Mode test/20 minutes ». (Interrupteurs DIP 1, 2 et 3 sur ARRÊT).
2. Assurez-vous que le niveau de luminosité est sur son réglage par défaut (maximum). Appuyez sur le bouton poussoir et maintenez-le enfoncé pendant 5 secondes ou jusqu’à ce que la DEL verte clignote rapidement. Attendez 10 secondes jusqu’à la fin du clignotement.
3. Assurez-vous que le potentiomètre d’ajustement de la sensibilité aux ultrasons est placé à environ 70 % dans le sens horaire.
4. Restez immobile. Les DEL rouge et verte ne doivent pas clignoter. Les lumières doivent normalement s’éteindre au bout de 5 secondes. (Dans le cas contraire, voir « Dépannage ».)
5. Déplacez-vous dans la zone de portée. Les lumières doivent s’allumer. Réglez la sensibilité ultrasonique comme nécessaire pour obtenir la portée désirée (la DEL verte indique l’activation du détecteur d’ultrasons).

Lorsque le test et le réglage sont terminés, paramétrez de nouveau les interrupteurs DIP et le niveau d’éclairage avec les réglages souhaités et remettez le couvercle sur le détecteur.

NOTE: *Le Mode Test* est un état temporaire qui démarre lorsque vous mettez les interrupteurs DIP du détecteur sur le « Mode test/20 minutes » pour la première fois (interrupteurs 1, 2 et 3 sur ARRÊT). Si vous avez besoin de lancer le Mode test et que les interrupteurs DIP sont déjà réglés sur le Mode Test/20 minutes, faites basculer l’interrupteur DIP 1 sur MARCHE, puis de nouveau sur ARRÊT. Cette action fournit une période de test de 10 minutes. Pendant cette période de test, la temporisation n’est que de 5 secondes.

FONCTION DU NIVEAU DE LUMINOSITÉ

La fonction de niveau de luminosité laisse les lumières éteintes si un éclairage ambiant suffisant existe au moment de la présence initiale. Elle n’éteindra pas les lumières si elles sont allumées. Le réglage par défaut est au maximum, ce qui signifie que même en cas d’environnement extrêmement lumineux, les lumières s’allumeront.

Remarques sur le fonctionnement

- Évitez d’installer le détecteur près des luminaires
- Effectuez le réglage pendant la journée, lorsque la luminosité ambiante est au niveau souhaité dans la zone.
- Le niveau de luminosité ne peut pas être activé lorsque le Mode test est en marche. Avant d’activer la fonction de niveau de luminosité, attendez la fin du Mode test ou sélectionnez un autre réglage de temporisation.
- La DEL du détecteur de présence à ultrasons est éteinte lorsque la fonction de niveau de luminosité est activée. La DEL du détecteur de présence à IRP peut toujours réagir lorsque les lumières restent éteintes. Les DEL clignotent également périodiquement pour indiquer que la fonction de niveau de luminosité du détecteur est activée.
- Les réglages du niveau de luminosité sont uniquement sauvegardés en cas de coupure de l’alimentation. Le fait de désactiver puis réactiver la fonction de niveau de luminosité ne permettra pas de retrouver les réglages précédents.
- Si le Mode test est activé après l’activation de la fonction de niveau de luminosité, celle-ci cesserait de fonctionner pendant toute la durée du Mode test. Lorsque le Mode test arrive à sa fin, la fonction de niveau de luminosité se réactive, même si les interrupteurs DIP restent en Mode test.

Règlement du niveau de luminosité

1. Assurez-vous que le Mode test est désactivé.
3. Appuyez sur le bouton de réglage du niveau de luminosité et maintenez-le enfoncé pendant 2 secondes ou plus, ou jusqu’à ce que les DEL de détection s’allument. Ne pas dépasser 5 secondes.* Le détecteur passe en mode de réglage, indiqué par le clignotement rapide des DEL. Les DEL clignotent pendant toute la procédure de réglage. Les notifications de présence des DEL sont désactivées pendant le réglage.
4. Éloignez-vous du détecteur pour éviter toute interférence pendant la détection du niveau de luminosité. Le détecteur mesure le niveau de luminosité pendant 10 secondes, puis fait la moyenne des relevés et règle automatiquement le niveau à utiliser comme nouveau réglage. Le détecteur laisse les lumières éteintes lorsque la luminosité ambiante est supérieure à ce réglage.

5. Lorsque les deux DEL ne clignotent plus, replacez le couvercle frontal.

Désactivation du niveau de luminosité

Appuyez sur le bouton-poussoir pendant 5 secondes ou plus pour remettre la fonction du niveau de luminosité au réglage par défaut (maximum).

Appuyez sur le bouton du niveau de luminosité et maintenez-le enfoncé pendant 5 secondes ou jusqu’à ce que la/les DEL de détection s’ALLUMENT puis s’ÉTEIGNENT. Les DEL clignotent rapidement pendant 10 secondes après le changement du réglage.

RÉGLAGE DE L’INTERRUPTEUR DIP

Temporisation : Interrupteurs 1, 2, 3

Le détecteur maintient les lumières ALLUMÉES tant qu’une présence est détectée. Le compte à rebours de temporisation démarre lorsqu’aucun mouvement n’est détecté. En l’absence de mouvement pendant toute la durée de la temporisation, le détecteur ÉTEINT les lumières.

Mode passage : Interrupteur 4

Le mode passage COUPE l’éclairage trois minutes après la première détection de présence, si aucun mouvement n’est détecté après les 30 premières secondes. Si le mouvement persiste au-delà des 30 premières secondes, la temporisation sélectionnée se déclenche.

Sensibilité IRP Interrupteur 5

- **Minimum** impose une réduction de la portée de détection de l’IRP.
- **Maximum** oblige le DT-300 à surveiller l’environnement contrôlé et à choisir automatiquement la sensibilité maximum qui garantit un fonctionnement fiable sans fausse détection. Ce réglage est constamment mis à jour.

Logique de présence : Interrupteurs : 6, 7, 8

Le DT-300 a 8 configurations logiques de déclencheurs de présence, correspondant aux interrupteurs DIP 6, 7 et 8. Déterminez l’option de logique de présence adaptée en vous servant du tableau des types de déclenchement, puis réglez les interrupteurs DIP en conséquence.

Présence initiale : permet de passer du mode « Veille » (zone non occupée et charges COUPÉES) à « Occupé » (zone occupée et charges ACTIVÉES).
- **Les deux** impliquent que la détection s’effectue via IRP et ultrasons.
- L’un ou l’autre implique que la détection s’effectue via l’une des deux technologies.
- **IRP** indique que la détection s’effectue uniquement par IRP.
- **Man.** nécessite une activation de l’interrupteur manuel. (Voir « Fonctions de MARCHE manuelle » pour plus d’informations.)

Maintien de la présence : méthode qui indique que la zone est toujours occupée et que les lumières doivent rester ALLUMÉES.

Re-déclenchement : après l’expiration de la temporisation et l’EXTINCTION des lumières, la détection par la technologie choisie avant la fin du délai indiqué en secondes RALLUME les lumières.

FONCTION DE MARCHE MANUELLE

La fonction de MARCHE manuelle est rendue possible par l’installation d’un interrupteur momentané comme l’interrupteur à bascule momentané LVS-1 de WattStopper. L’interrupteur se connecte à l’interrupteur manuel (Man.) du détecteur et aux bornes + 24 V, comme indiqué dans le schéma de câblage. Chaque fois que vous appuyez sur l’interrupteur, la charge change d’état. Le fonctionnement du détecteur par rapport à l’interrupteur manuellement actionné est déterminé par les réglages des interrupteurs DIP concernant la logique de présence.

Mode manuel (option de déclenchement 6 ou 7) : dans ce mode, l’interrupteur est nécessaire pour activer la charge. Le détecteur maintient la charge activée, en fonction de l’activité des occupants. Une fois la temporisation écoulée, si aucun mouvement n’est détecté pendant la période de re-déclenchement de 30 secondes, la charge se COUPE et l’interrupteur manuel doit être utilisé pour remettre la charge en MARCHE.

Mode automatique (toutes les options de déclenchement sauf 6 ou 7) : ces options se servent des déclenchements dus à la présence ainsi que de l’activation de l’interrupteur pour ACTIVER la charge. Un interrupteur manuel fournit les fonctionnalités supplémentaires suivantes:
1. La charge peut être ACTIVÉE à l’aide de l’interrupteur manuel et elle reste ainsi en fonction du réglage de la logique de présence. La temporisation s’applique comme programmé. Lorsque la charge se COUPE en raison d’une absence de détection de présence, elle peut être ACTIVÉE de nouveau par une détection de présence ou par l’activation de l’interrupteur.
2. L’activation de l’interrupteur manuel tandis que la charge est ACTIVÉE a pour effet de COUPER la charge.

• Lorsque la charge est COUPE manuellement, elle reste COUPE aussi longtemps que le détecteur continue de détecter une présence. Pendant la durée de la temporisation après la dernière détection de présence, les lumières restent éteintes et le déte...
Les lumières ne s’éteignent pas automatiquement.

La DEL verte clignote
Réduisez la sensibilité ultrasonique en tournant le potentiomètre d’ajustement dans le sens antihoraire jusqu’à ce qu’elle ne clignote qu’en cas de mouvements.

La DEL rouge clignote brièvement et la DEL verte ne clignote pas
Regardez si le raccordement de l’interrupteur manuel a été utilisé. Ne raccordez rien à cette borne si vous n’utilisez pas d’interrupteur instantané basse tension entre le détecteur et le bloc d’alimentation.

La DEL rouge clignote de manière aléatoire
Réglez la sensibilité de l’IRP au minimum en plaçant l’interrupteur DIP 5 sur la position « marche ».

Les lumières ne s’éteignent pas
1. Vérifiez tous les raccordements des fils du détecteur et du bloc d’alimentation.
2. Débranchez le fil bleu du bloc d’alimentation.
 • Si les lumières ne s’éteignent pas, vérifiez le câblage du bloc d’alimentation. Remplacez bloc d’alimentation si nécessaire.
 • Si les lumières s’éteignent, le problème peut se trouver au niveau du détecteur ou du câblage entre le détecteur et le bloc d’alimentation.
3. Rebranchez le fil bleu.
 • Mettez la sensibilité et la temporisation sur le réglage minimum et laissez le détecteur atteindre la fin de la temporisation.
 • Si les lumières s’éteignent, le détecteur fonctionne correctement – réglez la sensibilité et la temporisation du détecteur.
 • Si les lumières ne s’éteignent pas, vérifiez le câblage entre le détecteur et le bloc d’alimentation.
 • Si le câblage est correct, remplacez le détecteur.

ENTRETIEN
Pour neutraliser toutes les fonctions du détecteur, tournez le potentiomètre d’ajustement de la sensibilité ultrasonique complètement dans le sens antihoraire (Fonctionnement).
Cette action permet d’outrepasser les fonctions de contrôle de la présence par le détecteur, tout en laissant la possibilité de réguler manuellement les lumières à l’aide d’un interrupteur d’éclairage, si un tel dispositif a été installé.

INFORMATIONS CONCERNANT LES COMMANDES

<table>
<thead>
<tr>
<th>N° de référence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT-300</td>
<td>Détecteur de présence à double technologie, 360° basse tension avec relais isolé et détecteur du niveau de luminosité</td>
</tr>
<tr>
<td>DT-305</td>
<td>Détecteur de présence à double technologie, 360° basse tension</td>
</tr>
<tr>
<td>BZ-50, BZ-150</td>
<td>Bloc d’alimentation : 120/277 VCA, 50/60 Hz, 225 mA, ballast ou incandescent 20 A, 1 HP à 120/250 VCA.</td>
</tr>
<tr>
<td>BZ-200, BZ-250</td>
<td>Bloc d’alimentation : 120/277 VCA, 50/60Hz, 225mA, ballast/ELV/MLV/incandescence/LED 20A; E-ballast/CFL 16A</td>
</tr>
<tr>
<td>S120/277/347E-P</td>
<td>Bloc relais auxiliaire : 120/277 V c.a., 60 Hz, Ballast 20 A 347 V c.a., 60 Hz, Ballast 15 A</td>
</tr>
</tbody>
</table>

Tous les détecteurs sont blancs.
Les blocs d’alimentation de la série BZ peuvent alimenter jusqu’à 5 détecteurs DT-300.
INSTRUCCIONES EN ESPAÑOL

DESCRIPCIÓN DE LA UNIDAD

Los sensores de presencia con doble tecnología de 360° DT-300 WattStopper combinan tecnologías infrarrojas pasivas (PIR) con tecnologías ultrasónicas avanzadas en una unidad. La combinación de estas tecnologías ayuda a eliminar las falsas activaciones, incluso en aplicaciones difíciles.

El sensor DT-300 enciende y apaga los sistemas de iluminación según la presencia. Proporciona muchos modos de funcionamiento que se pueden combinar para crear el control personalizado ideal. Los sensores pueden configurarse para encender la iluminación y mantenerla encendida mientras que una o ambas tecnologías detecten una presencia. Si no se detecta movimiento durante el tiempo que especifique el usuario (30 segundos a 30 minutos), las luces se apagan. El modo de “recorrido” puede apagar las luces después de solo 3 minutos si no se detecta actividad después de 30 segundos de que se detecte una presencia.

El sensor DT-300 funciona con los paquetes de alimentación WattStopper de 24 V. Los sensores DT-300 también tienen un relé aislado con contactos Normalmente abierto (N.A.) y Normalmente cerrado (N.C.) para acoplarse con el sistema de calefacción, ventilación y aire acondicionado (HVAC) o el sistema de administración de energía (EMS).

GUÍAS PARA LA COLOCACIÓN

Según los obstáculos como muebles o distribución de la habitación, el área de cobertura puede ser menor o mayor que las distancias de detección que se muestran en el perfil de cobertura. Esto debe considerarse cuando se planifica el número de sensores y su colocación. También se recomienda colocar el sensor a 4 a 6 pies como mínimo de distancia de los respiraderos de suministro de aire. Montaje de sensor en cielo raso. El sensor DT-300 está diseñado para una altura de cielo raso de aproximadamente 8 a 12 pies. El montaje por encima o por debajo de este rango afectará significativamente los diagramas de cobertura. Como regla general, cada ocupante debería poder ver el sensor claramente.

Enmascaramiento de la lente PIR: Se proporciona una cinta adhesiva opaca para que se puedan enmascarar secciones de la lente PIR. Esto restringe la visualización del sensor y permite eliminar la cobertura PIR en áreas no deseadas, como los vestíbulos que se encuentran fuera del área cubierta deseada. Dado que el enmascaramiento quita franjas de cobertura, recuerde tener esto en cuenta al resolver problemas de cobertura. La cobertura ultrasónica no puede enmascararse, pero se puede ajustar la sensibilidad de esta para reducir el área de cobertura.

Aplicación común: Aula: Posicione el sensor de manera que se pueda alcanzar el límite máximo de cobertura. Asegúrese de que el sensor no apunte hacia la puerta.

Si el espacio es superior a 30’ x 30’, se deberá utilizar más de un sensor para asegurar una cobertura completa.

ESPECIFICACIONES

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje</td>
<td>18-28 V CC/V CA o CA rectificada de media onda</td>
</tr>
<tr>
<td>Consumo de corriente</td>
<td>28mA DC/81mA AC</td>
</tr>
<tr>
<td>Suministro de corriente</td>
<td>Paquetes de alimentación WattStopper</td>
</tr>
<tr>
<td>Especificaciones de relé aislado</td>
<td>1 A a 30 V CC/V CA</td>
</tr>
<tr>
<td>Temperatura de funcionamiento</td>
<td>0° a 55° (32° a 131° F)</td>
</tr>
<tr>
<td>Ajuste de nivel de luz en un paso</td>
<td>10 FC a 300 FC</td>
</tr>
<tr>
<td>Ajuste de la demora de tiempo</td>
<td>30 segundos a 30 minutos</td>
</tr>
<tr>
<td>Modo de recorrido</td>
<td>3 minutos si no hay actividad después de 30 segundos</td>
</tr>
<tr>
<td>Modo de prueba</td>
<td>5 s en el restablecimiento del interruptor DIP</td>
</tr>
<tr>
<td>Cobertura PIR (típica)</td>
<td>1300 ft²</td>
</tr>
<tr>
<td>Ajuste de sensibilidad</td>
<td>Alto o bajo(configuración del interruptor DIP)</td>
</tr>
<tr>
<td>Cobertura ultrasónica (típica)</td>
<td>1300 ft²</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>40 kHz</td>
</tr>
<tr>
<td>Calificado por UL y CUL</td>
<td></td>
</tr>
</tbody>
</table>

Sensor

Cobertura PIR de 36 pies (10,97 m)

Cobertura ultrasónica de 36 pies (10,97 m)

20 % Superposición ultrasónica

Sensor

20 % Superposición ultrasónica
PERFILES DE COBERTURA

El sensor DT-300 proporciona un perfil de cobertura de 360°. La cobertura que se muestra representa el movimiento de recorrido a una altura de montaje de 8 a 12 pies. En las áreas de edificios con menos nivel de actividad o con obstáculos y barreras, el alcance de la cobertura puede disminuir. La cobertura para el modo de activación de PIR SOLAMENTE varía según la altura del montaje. Consulte el siguiente perfil para obtener información detallada. La cobertura ultrasónica es aproximadamente la misma para las alturas de montaje de 8 a 12 pies. Consulte la cobertura del modo de activación PIR y ultrasónica para obtener información detallada.

INSTRUCCIONES DE CABLEADO

Cada paquete de alimentación de la serie BZ de WattStopper puede suministrar energía a 6 sensores DT-300. Cuando se utilicen más sensores, se necesitarán varios paquetes de alimentación.

Consulte los siguientes procedimientos del diagrama de cableado de la próxima página:

Conecte el bajo voltaje:
- Cable ROJO (+24 V CC) del paquete de alimentación a la terminal de +24 V del sensor.
- Cable NEGRO (retorno) del paquete de alimentación a la terminal común del sensor.
- Cable AZUL del paquete de alimentación a la terminal de salida de control del sensor.

Para agregar un INTERRUPTOR MANUAL como el interruptor de palanca momentáneo LVSW o el interruptor momentáneo de bajo voltaje RS2-3 para las aplicaciones anteriores (consulte el diagrama de cableado “Cableado de encendido manual con interruptor momentáneo de bajo voltaje”), conecte:
- El cable de un lado del interruptor a la terminal de +24 V del sensor.
- El cable del otro lado del interruptor a la terminal de interruptor man. del sensor.

Cableado del RELÉ AISLADO: El relé aislado es apto para 1 A a 30 V CA/V CC. Conecte los cables necesarios para la aplicación que requiere esta salida:
- Relé común (se debe usar para el funcionamiento adecuado)
- Normalmente abierto (N.A.): se cierra cuando se detecta una presencia.
- Normalmente cerrado (N.C.): se abre cuando se detecta una presencia.
CABLES DE CONEXIÓN

- Se debe tener cuidado para separar la energía de alto voltaje del cableado de control de bajo voltaje (Clase 2).
- Todas las conexiones que van al sensor son de bajo voltaje, Clase 2.

Cableado estándar con dos interruptores de apagado local

Cableado de Encendido manual con interruptor momentáneo de bajo voltaje

- **Las fuentes de energía BZ-200 se deben poner a tierra para garantizar la integridad de la señal, no para tierra de seguridad.**

MONTAJE DEL SENSOR

Directamente en cielo raso

1. Coloque las abrazaderas de resorte plásticas en el borde del sensor en las ranuras correspondientes.
2. Perfore un orificio redondo de 3,5" a 4" en la losa del cielo raso acústica en la ubicación del montaje. Se recomienda hacer un orificio redondo de 3,5" para que el calce sea seguro.
3. Pase el cable de bajo voltaje desde el paquete de alimentación hacia al sensor por el orificio.
4. Conecte los cables de bajo voltaje con las terminales correspondientes del sensor.
5. Eleve el sensor pasándolo por el orificio hasta que las abrazaderas de resorte sostengan con firmeza el sensor en su lugar.
6.Encastre la cubierta frontal en el sensor.

Uso de una caja de conexiones octogonal

1. Pase los cables de bajo voltaje desde el paquete de alimentación hacia dentro de la caja de conexiones por el troquel del conducto.
2. Conecte los cables de bajo voltaje con las terminales correspondientes del sensor.
3. Afloje los tornillos de montaje del dispositivo de la caja de conexiones.
4. Alinee el sensor en la caja de conexiones, de modo que los tornillos de montaje de la caja coincidan con los orificios del alojamiento trasero del sensor.
5. Introduzca el sensor en la caja de conexiones y gírela para que los tornillos de montaje se inserten en las ranuras de los orificios tipo bocallave.
6. Apriete los dos tornillos para fijar el sensor a la caja de conexiones.
7. Encastre la cubierta frontal en el sensor.
Esta unidad se preconfigura en fábrica para el funcionamiento básico como se describe en esta guía. El ajuste es opcional.

Los sensores vienen con ajuste predeterminado de fábrica para permitir una instalación rápida en la mayoría de las aplicaciones. Con los siguientes procedimientos, se puede verificar que el cableado o la cobertura sean adecuados o personalizar los ajustes del sensor. Para hacer ajustes, abra la cubierta frontal tirando de la lengüeta de la cubierta.

Hay un periodo de calentamiento de 30 segundos cuando se emplea la energía por primera vez.

Antes de hacer ajustes, asegúrese de que los muebles de oficina estén instalados, de que los circuitos de iluminación estén encendidos y de que los sistemas de HVAC estén en la posición de anulación/encendido. Los sistemas VAV deben configurarse con su máximo caudal de aire. Establezca la configuración lógica y la demora de tiempo en el valor deseado. Consulte el "Cuadro de configuración lógica".

Para probar los sensores de ocupación

1. Asegúrese de que la demora de tiempo se configure para el modo de prueba* mediante la configuración "Modo de prueba/20 minutos". (los interruptores DIP 1, 2 y 3 están APAGADOS).
2. Asegúrese de que el nivel de luz esté en el valor predeterminado (máximo). Presione y mantenga presionado el botón durante 5 segundos o hasta que la luz LED verde destelle rápidamente. Espere 10 segundos hasta que la luz deje de destellar.
3. Asegúrese de que el potenciómetro de sensibilidad ultrasónica esté configurado en aproximadamente 70 % en el sentido de las manecillas del reloj.
4. No se mueva. Las luces LED roja y verde no deberían destellar. Las luces deberían apagarse luego de 5 segundos. (En caso contrario, consulte “Solución de problemas”).
5. Desplácese dentro del área de cobertura. Las luces deberían encenderse. Ajuste de la sensibilidad ultrasónica según sea necesario para proporcionar la cobertura deseada (la luz LED verde indica activación desde el sensor ultrasónico).

Cuando la prueba y el ajuste se hayan completado, restablezca los interruptores DIP y el nivel de luz a las configuraciones deseadas, y vuelva a colocar la cubierta en el sensor.

NOTE: *El modo de prueba es un estado temporal que comienza cuando ajusta por primera vez los interruptores DIP del sensor para el “Modo de prueba/20 minutos” (interruptores 1, 2, 3 apagados). Si usted necesita iniciar el modo de prueba y los interruptores DIP ya están configurados para el “Modo de prueba/20 minutos”, mueva el interruptor DIP 1 a la posición de ENCENDIDO y, luego, a la posición de APAGADO. Esto proporciona un período de prueba de 10 minutos Durante el período de prueba, el tiempo de retardo es de solo 5 segundos.*

FUNCIÓN DE NIVEL DE LUZ

La función de nivel de luz mantiene las luces apagadas durante la presencia inicial si hay una luz ambiente adecuada. No apagará las luces si están encendidas. La configuración predeterminada está ajustada al máximo, lo que significa que aun con la luz ambiente más brillante no se mantendrán las luces apagadas.

Notas sobre la funcionalidad

- Evite montar el sensor cerca de dispositivos de iluminación.
- Realice los ajustes durante el día cuando la luz ambiente en el área esté en el nivel deseado.
- El nivel de luz no se puede activar mientras está activo el modo de prueba. Espere a que finalice el modo de prueba o seleccione cualquiera de las configuraciones adicionales de demora de tiempo antes de activar la función de nivel de luz.
- El indicador de presencia ultrasónico de la LED se desactiva cuando se activa la función de nivel de luz. El indicador LED de presencia PIR quizá aún responda cuando las luces se mantienen apagadas. Las luces LED también destellarán periódicamente para indicar que el sensor tiene el nivel de luz activado.
- Las configuraciones de nivel de luz solo se guardan en el caso de una pérdida de energía. Si se desactiva el nivel de luz y, luego, se lo vuelve a activar, esto no restituirá las configuraciones anteriores.
- Si se activa el modo de prueba después de haber establecido el nivel de luz, la funcionalidad de nivel de luz dejará de funcionar durante todo el período de duración del modo de prueba. Cuando expire el período del modo de prueba, se reanudará la funcionalidad de nivel de luz, aun cuando los interruptores DIP permanezcan configurados en el modo de prueba.

Configuración del nivel de luz

1. Asegúrese de que el modo de prueba no esté activo.
2. Alterne el estado del sensor, pulsando brevemente el botón de nivel de luz, para incluir la carga de iluminación en la calibración del nivel de luz o excluirla de esta. Abra la cubierta frontal y encuentre el botón de nivel de luz. Consulte Ajuste del sensor.
3. Presione y mantenga presionado el botón de nivel de luz durante 2 o más segundos, o hasta que las luces LED de detección se enciendan. No supere los 5 segundos.* El sensor ingresará al modo de configuración, como lo indican las luces LED que destellan rápidamente. Las luces LED destellarán durante todo el proceso de configuración. Los indicio de presencia de las luces LED se desactivan durante la configuración.
4. Alégrese del sensor para evitar la interferencia con la detección de nivel de luz. El sensor mide el nivel de luz durante un período de 10 segundos, luego realiza un promedio de las lecturas y establece automáticamente el nivel que se utilizará como la nueva configuración. El sensor mantendrá las luces apagadas cuando la luz ambiente exceda esta configuración.

5. Cuando las dos luces LED dejen de destellar, vuelva a colocar la cubierta frontal.

Desactivación del nivel de luz

Al presionar el botón durante 5 segundos o más, se restablece la luz al valor predeterminado (máximo). Presione y mantenga presionado el botón de nivel de luz durante 5 segundos o hasta que las luces LED de detección se enciendan y se apaguen. Las LED destellarán rápidamente durante 10 segundos después de que haya cambiado la configuración.

CONFIGURACIÓN DEL INTERRUPTOR DIP

Tiempo de demora: Interruptores 1, 2, 3

El sensor mantendrá las luces ENCENDIDAS siempre y cuando se detecte una presencia. La cuenta regresiva del tiempo de retardo se inicia cuando no se detecta movimiento. Si no se detecta movimiento durante la duración de la demora de tiempo, el sensor APAGA las luces.

Recorrido: Interruptor 4

El modo de recorrido APAGA las luces tres minutos después de que el área esté ocupada inicialmente, si no se detecta movimiento después de los primeros 30 segundos. Si el movimiento continúa más allá de los primeros 30 segundos, se aplica el tiempo de retardo seleccionado.

PIR Sensitivity (Sensibilidad PIR): interruptor 5

- El mínimo obliga un rango de detección reducido para la tecnología PIR.
- El máximo hace que el DT-300 supervise el ambiente controlado y que seleccione automáticamente la sensibilidad máxima que ofrecerá un funcionamiento confiable sin falsas detecciones. Esta configuración se actualiza constantemente.

Lógica de presencia: Interruptores: 6, 7, 8

El DT-300 tiene 8 configuraciones lógicas para los activadores de presencia establecidas en los interruptores DIP 6, 7 y 8. Determine la opción de lógica de presencia adecuada usando la matriz de activación y, luego, configure los interruptores DIP en consecuencia.

Ocupación inicial: El método que activa un cambio de “Espera” (área sin presencia y cargas APAGADAS) a “Ocupado” (área con presencia y cargas ENCENDIDAS).
- Ambos requieren una detección mediante tecnologías PIR y ultrasónica.
- Cualquiera requiere detección mediante solo una tecnología.
- PIR requiere detección mediante PIR.

Mantener ocupación: El método que indica que el área aún está ocupada, y las luces deberían permanecer ENCENDIDAS.

Reinicio: Después de que transcurre la demora de tiempo y las luces se APAGAN, la detección mediante la tecnología seleccionada dentro de la cantidad de segundos indicados ENCIENDE nuevamente las luces.

FUNCIÓN DE ENCENDIDO MANUAL

La función de encendido manual se facilita instalando un interruptor momentáneo como el interruptor de palanca momentáneo LVSW Watt Stopper o el interruptor momento de bajo voltaje RS2-3. El interruptor se conecta con la función Manual (Man.) del sensor. El interruptor y las terminales de +24 V se muestran en el diagrama de cableado. Cada vez que se presiona el interruptor, la carga cambia el estado. El funcionamiento del sensor en relación con el interruptor accionado manualmente se determina según la configuración del interruptor DIP para la lógica de presencia.

Modo manual (opción de activación 6 o 7): En este modo, se requiere el interruptor para encender la carga. El sensor mantiene la carga encendida, según la actividad de presencia. Después de finalizada la demora de tiempo, si no se detecta ningún movimiento dentro del período de reinicio de 30 segundos, la carga se APAGA y se debe utilizar el interruptor manual para ENCENDER la carga.

Modo automático (cualquier opción de activación, menos 6 o 7): Estas opciones utilizan los activadores de presencia así como la activación mediante lógica de interruptor para encender la carga. Un interruptor manual proporciona la siguiente funcionalidad adicional:

1. La carga puede encenderse con el interruptor manual y permanece encendida según la configuración de lógica de presencia. La demora de tiempo funciona según lo programado. Cuando la carga se apaga a causa de falta de detección de presencia, puede volver a encenderse mediante la detección de presencia o mediante el interruptor.
2. Si se activa el interruptor manual mientras la carga está encendida, esto apaga la carga.
 • Cuando se apaga la carga manualmente, siempre y cuando el sensor siga detectando la presencia, la carga se mantiene apagada. Después de la última de detección de presencia, las luces permanecen apagadas y el sensor se revierte al modo de encendido automático.
 • Cuando la carga se apaga manualmente, al presionar el interruptor nuevamente, la carga se enciende y el sensor se revierte al modo de encendido automático.
 • Una vez que se vuelve al modo de encendido automático, el interruptor o la detección de presencia pueden encender la carga.

 PROTECCIÓN CONTRA SOBRECARGA

 El sensor de presencia tiene una función de protección contra sobrecarga integrada que apaga la salida del control automáticamente cuando la corriente de la carga supere 200 mA. Las luces LED del sensor parpadearán rápidamente (~ 10 Hz) a fin de emitir una señal visual de una condición de sobrecarga. Cuando se corrija la corriente de la carga o vuelva al estado normal, la salida del control volverá a encenderse.

 SOLUCIÓN DE PROBLEMAS

 Para cualquier funcionamiento inesperado
 1. Verifique la configuración del interruptor DIP.
 2. Asegúrese de que los interruptores estén configurados según los ajustes definidos en el cuadro de configuración del interruptor DIP.

 Las luces no se encienden cuando ingresa a la habitación.

 Ninguna luz LED destella
 1. Verifique que el disyuntor se haya encendido de nuevo.
 2. Controle todas las conexiones de cables del sensor y del paquete de alimentación.
 3. Verifique la entrada de 24 V CC al sensor entre los cables de bajo voltaje rojo y negro.
 • Si hay 24 V CC, cambie el sensor.
 • Si no hay 24 V CC, verifique las conexiones de alto voltaje que van al paquete de alimentación.
 • Si las conexiones de alto voltaje están bien y hay alto voltaje, cambie el paquete de alimentación.

 La luz LED roja no destella.
 1. Cuando se energiza el sensor inicialmente, hay un período de calentamiento de 30 a 60 segundos antes de que la LED se active.
 2. Asegúrese de que la sensibilidad PIR esté configurada en 100 % (el interruptor DIP n.º 5 está en la posición de apagado).

 La luz LED verde no destella.

 Quizás deba aumentarse el valor de configuración de la sensibilidad ultrasónica. Gire el potenciómetro de ajuste en sentido de las manecillas del reloj hasta que la LED comience a destellar cuando se produce un movimiento.

 La luz LED verde está encendida de manera constante.

 Verifique el potenciómetro de sensibilidad ultrasónica. La posición completamente contraria a las manecillas del reloj es la anulación del sensor. Gire el potenciómetro en el sentido de las manecillas del reloj hasta que la luz LED destelle solamente cuando se produce el movimiento en el área de cobertura deseada.

 Las luces LED rojo y verde destellan
 1. Controle todas las conexiones del sensor y del paquete de alimentación.
 2. Verifique que el nivel de luz esté activado.
 • Si los indicadores LED de presencia parpadean juntos cada unos pocos segundos, el sensor está utilizando la función de nivel de luz.
 • Si no se desea la funcionalidad de nivel de luz, presione y mantenga presionado durante 5 segundos para volver el sensor a la configuración predeterminada (máximo).
 3. Verifique que haya 24 V CC en las conexiones de los cables azul y negro del paquete de alimentación que van al sensor mientras el sensor está activo.
 • Si no hay voltaje, cambie el sensor.
 • Si hay voltaje, verifique que haya 24 V CC entre el cable azul y el negro en el paquete de alimentación. Si hay 24 V CC y el relé no se cierra, cambíelo.
 • Si no hay 24 V CC, verifique que no haya un cortocircuito en el cableado de bajo voltaje.
 4. Si las luces LED destellan rápidamente (~10 Hz), hay una condición de sobrecarga. Cuando esta situación se corrije, el sensor vuelve a funcionar normalmente. Verifique la conexión del cable azul. Si es necesario, cambie el paquete de alimentación.

 Las luces no se apagan automáticamente.

 La luz LED verde destella.

 Reduzca la sensibilidad ultrasónica moviendo el potenciómetro de ajuste en sentido contrario a las manecillas del reloj hasta que solo destelle cuando se produce el movimiento.
La luz LED roja destella brevemente y la luz LED verde no destella.
Verifique que haya utilizado la conexión del interruptor manual. No haga ninguna conexión a esta terminal si no está usando un interruptor momentáneo de bajo voltaje entre el sensor y el paquete de alimentación.

La luz LED roja destella aleatoriamente.
Fije la sensibilidad PIR al mínimo girando el interruptor DIP 5 a la posición de encendido.

Las luces no se apagan.
1. Controle todas las conexiones de cables del sensor y del paquete de alimentación.
2. Desconecte el cable azul del paquete de alimentación.
 • Si las luces no se apagan, verifique el cableado del paquete de alimentación. Cambie el paquete de alimentación de ser necesario.
 • Si las luces se apagan, el problema puede estar en el sensor o el cableado entre el sensor y el paquete de alimentación.
3. Vuelva a conectar el cable azul.
 • Vuelva la sensibilidad y la demora de tiempo al mínimo, y permita que el sensor termine el tiempo de espera.
 • Si las luces se apagan, el sensor está funcionando correctamente. Ajuste la sensibilidad y la demora de tiempo del sensor.
 • Si las luces no se apagan, verifique el cableado entre el sensor y el paquete de alimentación.
 • Si el cableado está bien, cambie el sensor.

SERVICIO
Para anular todas las funciones del sensor, ajuste el potenciómetro de sensibilidad ultrasónica completamente en sentido contrario a las manecillas del reloj (servicio).
Este omite las funciones de control de presencia del sensor, pero permite que las luces puedan controlarse manualmente con un interruptor de luz, si hay uno instalado.

INFORMACIÓN PARA PEDIDOS

<table>
<thead>
<tr>
<th>del atenuador</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT-300</td>
<td>Sensor de presencia con doble tecnología de bajo voltaje y de 360° con relé aislado y el sensor de nivel de luz</td>
</tr>
<tr>
<td>DT-305</td>
<td>Sensor de presencia con doble tecnología de bajo voltaje y 360°</td>
</tr>
<tr>
<td>BZ-50, BZ-150</td>
<td>Paquete de alimentación: 120/277 V CA, 50/60 Hz, 225 mA, balasto o incandescente de 20 A, 1 HP a 120/250 V CA</td>
</tr>
<tr>
<td>BZ-200, BZ-250</td>
<td>Paquete de alimentación: 120/277 VCA, 50/60Hz, 225mA, ballasto/ELV/MLV/incandescente/LED 20A; E-ballasto/CFL 16A</td>
</tr>
<tr>
<td>S120/277/347E-P</td>
<td>Paquete de relé auxiliar: 120/277 V CA, 60 Hz, balasto de 20 A y 347 V CA, 60 Hz, balasto de 15 A</td>
</tr>
</tbody>
</table>

Todos los sensores son blancos.
Los paquetes de alimentación de la serie BZ proporcionan alimentación para hasta 5 sensores DT-300.

<table>
<thead>
<tr>
<th>WARRANTY INFORMATION</th>
<th>INFORMATIONS RELATIVES À LA GARANTIE</th>
<th>INFORMACIÓN DE LA GARANTÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wattstopper warrants its products to be free of defects in materials and workmanship for a period of five (5) years. There are no obligations or liabilities on the part of Wattstopper for consequential damages arising out of, or in connection with, the use or performance of this product or other indirect damages with respect to loss of property, revenue or profit, or cost of removal, installation or reinstallation.</td>
<td>Wattstopper garantit que ses produits sont exempts de défauts de matériaux et de fabrication pour une période de cinq (5) ans. Wattstopper ne peut être tenu responsable de tout dommage consécutif causé par ou lié à l’utilisation ou à la performance de ce produit ou tout autre dommage indirect lié à la perte de propriété, de revenus, ou de profits, ou aux coûts d’enlèvement, d’installation ou de réinstallation.</td>
<td>Wattstopper garantiza que sus productos están libres de defectos en materiales y mano de obra por un periodo de cinco (5) años. No existen obligaciones ni responsabilidades por parte de Wattstopper por daños consecuentes que se deriven o estén relacionados con el uso o el rendimiento de este producto u otros daños indirectos con respecto a la pérdida de propiedad, renta o ganancias, o al costo de extracción, instalación o reinstalación.</td>
</tr>
</tbody>
</table>